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Anietarpic continuoas media in which energy and the stresses depend on the gradients of 

the strain tensor and other tensor quantities, are investigated. 
In par. 1 we study the relationship between the derivativea of tensor characteristics 

with respect to coordinates of the initial, undeformed state and the derivatives with 
respect to coordinates of the deformed state. 

In par. 2 we formulate the basic assumptions under which a closed system of squationts 
is obtained for the anknown.ftmctiona. 

fn pore 3 B general method of coostnrcting a quadratic form for the free energy of 

aniaatropic media posses&g a texture is given. 
In par. 4 the theory is illustrated by the case of fongitt&naI and transverse waves in 

the texture pmmeaeing a conical symmetry I QO l m I; dispersion equations connecting the 

wavelength aad frequency are g&an; aame properties of the coefficients of a form which 
is quadratic in the componats aad gradients of deformation, are investigated, 

1. lo. Let a model of a material medium be defined by a finite system of character= 

istics given by the numbers 

where pz are the quuntitisa which may be variable, while kj are qaantitius cwt&tnt in 
the gives region of the mdium, i.e., phyuicaf coastaats. 

In general, the definiag parameters are connected by the following differmtial eqna- 

tiOtk3 

2&h h r*.g~lnck~,kr,...k~~dll~=~ 
Q f1.2) 

which can be integrable (holoaomic eyatem) or non-integrable (non-holomic ayetern). 
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Independence of the variable parameters @‘i is by definition based on the fact that 

virtual displacements 61ri can, for a given system in a given state, be considered in some 

regfon as arbitrary infinitesimals, in particular, as linearly independent quantities. 

Defining parameters may include not only such parameters as density, deformation 
tensor, polarisation vector e.t.c., but also their derivatives with respect to time and space 

coordinates. 

It is known, for example, that the actual streugth of some materials depends on the 

gradient of deformation (see [ 1] 1. 

In a number of papers the parameters defining the models of media include the spatial 

derivatives or, more accurately, the gradientsof defining parameters. In [1 to S] defining 
parameters inclnde deformation gradients and the cases of isotropic media are investigated. 

P. Let the components of some tensor T,, ;=. T,p (E’, E2, E3, t), and its gradients, 

be included among the defining parameters. Here 6” are the Lagrangian coordinates of a 

point and t is time. 

The gradient of the tensor T 

X 

can be considered in the space of initial states, i.e., 

in the coordinate system fixed wr respect to the initial position of the body. We shall 

denote its components by VomTnp. The gradient cau be considered in the actual space, 

i.e. in the coordinate system fixed with respect to the moving body. The latter components 

shall be denoted by V nm~np_ 

We shall use the saperscrfpt” to refer to the space of initial states, while the super- 

script a will denote the actual space. Further, we shall assume that TnP can be consi- 

dered as the components of either of the following two tensors Toor T ^, i.e. 

T"np = T^,, = T,,. 

Indeed, two tensors To and T A can be introduced both possessing identical covariant 

components T 
ap 

with respect to two different bases 

T” = T,#” $“, T*l=T,,3”“3-’ (1.31 

where 3** and 3”” (n = i, 2, 3) f arm a contravariant vectorial basis of a Lagraugian 

coordinate system in the actual space and in the space of initial states, respectively. 

The corresponding contravariant components of the above tensors will however be 

different. The operation of raising the indices of the tensors To and T” mast involve 

the use of the corresponding tensors gouP, and g-n”, the latter being the componants of 

the metric tensors g” E g’u~3~~3’ p and g * = g” ““3 “,3 np respectively. 

We shall show that, in general, the incorporation of V”m Tnp into the defining 

parameters ia not equivalent to the incorporation of 77 “Jnp . We have the following 

familiar formulas 

Y7^,,,Tnp = f$-T..r^:,,-- T,,I “:,, 

Where r^,&, and I”=‘&, are the Christoffel symbols 
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(1.5) 

Let us consider the difference 

v ^mTnp - T’tnTnp = T,, (I?$, - r ^&,) + T’,, (f’$, - r ^&,) (1.6) 

Using the second formula of (1.4) in which 

first formula of (1.5). as 

gnnp, replaces Tnp , we can write the 

r ^& = +gAag (VopgAms + gAmjroi, -f- gA,jroLp + Vomg*ps + gApjr~its + 

+ ga,jI'"ip - VosgAmp - gAtnjrojsP - gApjroLJ 

or 

r -I ru. 
mp - p?-“” w”,r,, + vonrps - VO$“mp) + gAaSg^,jr”LP (1.7) 

Taking into account the fact that ~opgoms = 0, we have, from (1.7) 

r Aa 

mP - r”% = g”“” (vopEms $ v”mEps - r&p), Ems = + (g”,,- g”,s) (“*) 

Here Ema are the components of the tensor of finite deformations. 

Analogously, we can obtain 

r Aa 

mP - fh, = goas 07 nphs + v kps - v 3mp) (1.9) 

Using (1.8) let us write (1.6) as 

V ‘JJnp = v~~T,~ - T,mg*=S (V”p~ms i- V’rn~~s - V”semp) - 

- TqgAzS (v~~G,,~ + V”me,, -- V’sgmn) 
(1.10) 

using 

L*$$ = _ T,,g*aS (dpk&(i&j) + 6,k6,‘id,j’ _ A,khm(idpj)) _ 

- T,,g * =s (~,k~,‘i~,i’ + &k6,‘i,j,y’ _ &k&‘i&j’) = La;:;) (T,,, gAab) (“‘*) 

we obtain, from (1.10) 

Here the round parentheses enclosing the indices (ii) define the operation of sym- 

metrising the tensor with respect to the corresponding indices, and dividing the result 

by two. 
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i.e. the conclusion is reached that, from the theoretical point of view, it is immaterial 

whether V * ,,1 E,,~ or ‘T”,n~,P, are included in the defining parameters, since one of 

them can be expressed in terms of the other according to the formula (1.13). 

If the deformations are small enough to make the terms Edgvok&ij negligible, then 

we shall have 

with the accuracy of up to the infinitesimals of the higher order or, in other words, for 

small deformations the above gradients coincide. 

A formula of the type (1.121 can be written for a tensor of any rank I 

from which we see that the inclnsion of VA m T B,, Be, . . . . bl among the defining parameters 

is not equivalent to the inclusion of ~OmTB,, B,, ,_,, b1 , unless the latter is supplemented 

with v’&. Hence, (I.151 gives us the relationship between two sets of the defining 

parameters. 

If the deformations are small and the condition 

TMJr....,81 

VT&, CI,. . . . . o+ 
v’aebc 4 1 

is satisfied, then 

v -‘m%. et. ,.., Br = VOmTB1, $......8, 

If p is a scalar, then we always have 

Substitution of 

(1.161 

(1.171 

(1.131 

into (I.151 results in the expression for v”,,,TB,, BI, . . . . Br in terms of 

V %“FL B,....,B,, TB‘.h...,8,? Eij9 VAmenp 
2. Let us make the following assumptions. 

lo. In the following, only reversible processes will be considered, although all the 

assumptions will remain in force if only we assume that 

d Q(e) = To53 
(2.11 

where T is the temperature, S is the entropy and dQfe) ’ 1s the increase in the heat energy. 



634 ,M.h. Idin 

29 Let us consider the free energy F 

F = F (T, g%, Eij, V “k~ij, nAi, VAknhi) = F (pi, kJ (2.2) 

Here 8cj is the tensor of finite deformations and n’ is a vector. 

We assume, that the metric tensor in the space of initial states g”fj is independent 

of time 

g “ii = g”“j (El, 52, 53) 

The free energy increment for the elementary particle is, by the Z-nd Law of 

The~od~amics 

where e ii is the tensor of the velocities of deformation. If g”“j is independent of time, 

then es&t = de+ 

3’. We shall assume that dq** is the additional energy flux through the surface c 

surrounding the given element of volume V of mass dm, i.e. 

a~**a~ = 1 ~k~~d*at = $ ~A~~kd~at (2.4) 
r. V 

here nk are the components of the normal to x. The fact that V is small implies that the 

integral in (2.4) can be replaced by its integrand; taking into account the fact that 

dm = p,,tEt, = pdz, we have 

(2.5) 

4O. We assume that the energy flux dq** is proportional to the increase in the defining 

parameters, i.e. 

Skdt = ~~j~j f R W dv “le*j + Lkidn^i f ~kz~dVA~~Ai + AkdT (2.6) 

where @if, RW, Lki, mkli, and hk also depend on the parameters (2.2). 

So. We assume that there are no non-holonomic relationships between the defining 

parameters and that d$ together with V ^k+,i can be considered independent. Let us 

use the formulas 

dv ^m8,,p = L$,$$,~ V ^k dQj, dv n,nnp = v n,,, dn “P -/- ghlcij)P V Iff de~j (2.7) 

the derivation of which will be given in the appendix A. Here 
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; g+k (&a,j + .*js,‘) -- 

Comparing the coefficients in the left-&d right-hand sides of the equation (2.3) 

we have, for independent increments 

Ak = 0, mkli = 0, Rkrif -_ 0, $ = --s 
aF 

.= 
@3VA,a-= 

$Lki, $- zcz - ; CiAkLkf 

P -ij = p~j___O~kQ~~j 

q):(C) P = $ Q”j 

(2.9) 

(2. IO) 

(2.11) 

which represent the equations of motion, the continuity equation and the law of conservation 

of energy, and from a closed system of equations for the components of the vector 

II = nY3*i, for the displacement vector U = ~*ia^i, for the temperature 2’ and the 

entropy S. 

EIiminating Lk i from (2.101, we obtain 

(2.12) 

which, can be used to determine n”* in terms of the other defining parameters, when the 

relationship between F and the defining parameters is known. 

The stresses are determined from (2.11.1) where Q kij given by (2.11.2) is used. 

Equation (2.9.4) is used to determine the entropy S. 

Assuming that the energy gain dq** exists, we have 

dg ** = f c”~ [Qkijdeij + Lki&f’] = (2.13) 

If ‘C7*@“i are not included in the defining parameters, we 

If n*i belongs to the parameters of the type pi, then since 

wilI give 

aF / att^i = 0 

have 

(2,141 

dn^" # 0, (2.14) 

(2.15) 

which can be regarded as conditions for the determination of nsi in terms of known F. 

If n” i is one of the parameters of the type kit Le. n”i = nAi (El, E2, E3), 
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then for a particle &zAi = 0 and Equations (2.15) do not follow. In this case?L”i should 

be assigned to each particle as a constant external parameter. As au example let n-i 

define the anisotropy of a material medium possessing a definite texture and let the aniso- 

tropy of each particle be constant with respect to time. This will be preciseiy the case of 

n”i belonging to the set of parameters of the type k i. The energy gain de* will, in this 

case, be given by the following expression 

which makes it clear that the energy exchange dq ** between the particles takes place 

only, when the deformations are time-dependent, i.e. when &ij + 0 , In the static 

case, dq** = 0. 

If on the other hand XJ ^kn”i, are included amongst the defining parameters then, 

even in the static case, the energy flux dq** into the particle differs from zero, if 

is time-dependent, i.e. if &zAi # 0. 

3. 1’. In case of small deformations the theory of elasticity gives the following 

quadratic form for the free energy 

or, for the isotropic medium 

(3.2) 

where X, and g are Lam& parameters. 

We shall assume that in case when vnk Efj, are, together with ‘%j, included 

in the defining parameters, then the free energy will also be represented as a quadratic 

form 

Here the tczmors Ai3k1, Biikim, and Cijkzmn 

indices ij and kl. The tensor Aijkl 

are symmetric with respect to the 

is also symmetric with respect to the interchange 

of pairs of indices ij and kl, while the tensor C 
ijklmn . 1s also symmetric with respect 

to the simulataneous interchange of the indices i and k, j and I, m and n. 

In the case of small deformations c *kEij can be replaced by V*k&ij; or, in 

the Cartesian coordinate system, simply 

aEij_ 
i3Xk 

- eij, k 

if the material medium possesses a definite symmetry group, then the tensors A 
ijkl , 

~ijklm and Cijklmn will be invariant with respect to this symmetry group. 

General form of sych tensors up to the fourth ran4 and for any symmetry group, is 

given in [6]. The author has at his disposal general forma of tensors of the fifth and sixth 

ran4 invariant with respect to all the seven texture configurations. They are omitted from 
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here because of their bulk. They are of the type 2’ = krTr f . . . + k,,T,, where Tn are 

the linearly independent tensors formed from the tensors defining the symmetry group of 

each particular texture, while k, are scalar functions. Thereby, the number p is, for 

tensors of the rank r = 5 and r - 6, equal to 

cG,cz. M ~I~ M’m m~m:n% co:2 w co:,,t 

p=== 0 6 26 0 25 51 0 (r = 5) 

p-_ $5 15 71 71 71 151 -142 (r=(i) 

(symbols for the types of texture are taken from [6]). 

2’. Consider for example a material medium possessing a symmetry group (w* m) and 

given by the metric tensor g = gij3,sj , together with the anisotropy vector n =L: nisi. 

The free energy will, in this case, have the following form 

F = k, (~ii)~ $ k,eij~ij 3” k3n,lajEkkEij -i_ h-,ninjE;~“,, + k,ninj”r’ll&ij”lrl + 

+ “i [k&jcjt, l i- ‘,EijEtl, j i- k@jj”it, I $- ‘,‘jt”it, j + ‘djj”lt, i + kxlEjFjt, iI + 

Hence, the model of the considered medium is fully defined by 39 physical constants 

amongst which 2k, = h , and 4 = p where h and g are Lame’ parameters. Coefficients 

kl, . . . . km may depend on the temperature and on the modulus of the aniaotropy vector. 

For small deformations, we have 

(3.6) 

Equations of motion then become 

aaui dPij 
PO w = popi 4-x = I-@~ -I- p. 7 

1 
(3.7) 

where Fi are the external mass8 forces; 

Pt3 - $ Po (2 [sk$ijk, + zk aeij + ‘3 tnin$*kk t ~k~~~k~~~j) + ‘ank tniekj + njskj) + 
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where U, are the components of the displacement vector. 

4. lo. Let us assume, in addition, that the external mass forces are absent, thatnis 

time and coordinate independent and let us consider the case of longitudinal waves 

UI = U. = u (@, U2 = ua 5 0 

Then, the equations of motion reduce to a single equation 

(4.0 

a2U 
atll =1 dg2-Bg (4.2) 

A = 24 + 24 + 2k, (d2 + 24 (4” + 2ks (d’ (4.3) 

B = 2 hi + kls + k,, -I- h;t, + k,,) + 2 (nJ2 (k,, + 
+ k,4 + k,, + k,, + k,, + 4, + k,, + k,, + k,, i- k,, + 
+ &a) + 2 @I)* (&a + Ss + kae + k,, + k,,) -I- 2 (n&” k,, 

(4.4) 

From the conditions of stability we preuppose that ki > 0. Then A > 0 and B >,O. 

We shall seek the solution of (4.2) in the form 

Solving (4.2) we obtain 
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Here a is the velocity of the wave propagation, h is the wavelength and T is the 

period. 

Since A > 0 and B >O, we see from (4.7) that in the given medium, the velocity of per- 

turbation a, can never assume the value pmaller than that of the velocity of perturbation in 

the Hooke’s elastic medium of the theory of elasticity, and approaches it at large values of 

A. 

When h is small, then from (4.7) it follows that 

aa = 4x3-B 1 h2, T =h2/2n711/B (4.8) 

which means that both, a and T are definedin termsof the coefficient B, which in turn is 

defined by the coefficients of the quadratic form, which multiply the deformation gradients. 

2’. Under the assnmptions concerning ni and Fi which were already given in par. 4.1°, 

we consider the case of transverse waves 

u2 = u!J (ZJ = u2 (XI, us = 7.43 (q) = us (4, u1 E 0 (4.9) 

Since ni are coordinate-independent we can, after the transformation of coordinates IC, and 

z, (rotation in the plane %a z,), select a coordinate system in which n, = 0. In this system 

the equations of motion will be gfven by 

(4.10) 

A, = 

B1 = 

a = 4k, + 2k, (n22 + nl”) .+ 4k, (nlnz)” 

4k,, + 2k,o + 2k,, + 2k,,n,2 + k,, (nl” + nz”) + 
-I- 2k,,nZ + 2k,,nz + 2k,,n,2 + 4ks3n? 

8 = 4k, + 2k,np 

4k18 + 2klo + 2k2, + n,Z (2k2, + k,, + 2k3, + 4k3d 

1, = U3nIn2 + 4&n, + @fl13n2 

(4.11) 

I2 = 2n2 (k3 + k3) - 2n2 (k3 + k,) + n?n2 (- 2k,2 + 4h4 - 4k13 + 2k13) 

- 1, = 2n,n2 (2k2, + ‘2k2, + k23 + k23 + 2k2, + 2k23 + 2k23 + 

+ 2kso + k3J + 2n,8 n2 (3k3, + 2k33 + We33 + 3ks7 + 4&J + 8kmntns 

We shall seek the solution of (4.10) in the form 

u2 =f2 ( 5 - bt), us = (z - at) 

Then, if we assnme that n, # 0 , the solution will be 

(4.12) 

242 -_= 0, ug=elcos[(~~(z-at)]+c2sin[(T)Y.(z-&et)] 

from which we can obtain the relations analogous to (4.7) 

a2=b+q, h = 2n (-&,‘“, T = G (&“* = &=I (4.13) 
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From (4.13) it follows that the pIane of polarisation of the transverse wave is per 

pendicular to the plane formed by the direction of the anisotropy vector n and the direction 

of the wave front. If n, = nl = 0, then the plane of polarisation can be arbitrary. 

Note. In both, longitudinal and transverse cases we obtain the relationship between 

the wavelength A and its frequency ok = 2/r/7’, in the form of dispersion equations 

a_ = ‘$ v’ Ah= + 495, 2n r wi=pi. P h2 f4na5, (4.141 

From (4.14) it follows that for large wavelengths, the frequency is related to the 

wavelength in the manner as in Hooke’s media 

w_ = 2n Jf;i / h, w~=2n?pp 

while in case of small wavelengths, the frequency is determined from the coefficients 

appearing in the quadratic form in front of the deformation gradients, according to the 

formulas 

*_ = 49 )fB / AZ, WI = 45P Jlf’B, / h2 

The velocity of propagation varies with wavelength and is calculated by means of 

(4.13) for transverse waves, and by means of (4.71 for longitudinal waves. 

If the direction of wave propagation is orthogonal to the anisotropy vector then, since 

in this case A, B, p, and 3, are independent of nil it follows, that the anisotropy of the 

medium does not influence the frequeucy, period or the velocity of propagation and, that 

the waves propagates just as they do In the isotropic medium. 

Appettdfx A. Derivation of the formulas (2.7). We have the well known formnfae 

Equating them, we obtain 

WA menp = V “mde,p - e,,dr “& - eapdr A&n 

(A.11 

(A.21 

(A.31 

(A.41 

Using the second formula of (A.41 and the first formula of (A.11 in which 

drs,, =‘M (g”n,-gO,,t can be replaced by danp= lfadg^,P, assuming that gonP is time 

independent, we can write the first formula of (A-41, as 



It is interesting to note that in the formula obtained previonsIy 

and in the formula (A.7), we encounter the same tensor 

where 

gk(ij)P;2~-Bmh-(n*ig*Pj+.Ajg*Pi) + $nAk fg”pj6 
m 

i+gApismj)_ 
m (A.ll) 

x 
-7g *‘““,(n”iQ .,_ n”j~mt) 
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