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Anistorpic continuous media in which energy and the stresses depend on the gradients of
the strain tensor and other tensor quantities, are investigated.

In par. 1 we study the relationship between the derivatives of tensor characteristics
with respect to coordinates of the initial, undeformed state and the derivatives with
respect to coordinates of the deformed state.

In par. 2 we formulate the besic assumptions under which a closed system of equations
is obtained for the unknown.functions.

In par. 3 a general method of constructing a guadratic form for the free energy of
anisotropic media possessing a texture is given.

In par. 4 the theory is illustrated by the case of longitudinal and transverse waves in
the texture possessing a conical symmetry {ooem); dispersion equations counecting the
wavelength and frequency are given; some properties of the coefficients of a form which
is quadratic in the components and gradients of deformation, are investigated.

1. 1°. Let a model of a material medinm be defined by a finite system of character
istics given by the numbers

Pp Pag: ey Pms kl’ kz, .oy km. (1-1}

where p, are the quantities which may be variable, while ki are quantities constant in
the given region of the medium, i.e., physical constants.

In general, the defining parameters are connected by the following differential equa-
tions

EAﬁ(“ly Bay o oo fin, kl, ;Cg,-..km)d}l‘::() (1.2)
&% »

which can be integrable (holonomic system) or non«integrable (non-holomic system).

630



Anistropic continuous media 631

Independence of the variable parameters y1; is by definition based on the fact that
virtual displacements api can, for a given system in a given state, be considered in some
region as arbitrary infinitesimals, in particular, as linearly independent quantities.

Defining parameters may include not only such parameters as density, deformation
tensor, polarisation vector e.t.c., but also their derivatives with respect to time and space
coordinates.

It is known, for example, that the actual strength of some materials depends on the
gradient of deformation (see[1]).

In a number of papers the parameters defining the models of media include the spatial
derivatives or, more accurately, the gradients of defining parameters. In [1 to 5] defining
parameters include deformation gradients and the cases of isotropic media are investigated.

2° Let the components of some tensor Inp = I'np (8!, £2, E3, #), and its gradients,
be included among the defining parameters. Here £* are the Lagrangian coordinates of a

point and ¢ is time.

The gradient of the tensor Tn can be considered in the space of initial states, i.e.,
in the coordinate system fixed wi!ﬁ respect to the initial position of the body. We shall
denote its components by V. T'np. The gradient can be considered in the actual space,
i.e. in the coordinate system fixed with respect to the moving body. The latter components

shall be denoted by mTnp-

We shall use the superscript® to refer to the space of initial states, while the super-
script " will denote the actual space. Further, we shall assume that 7', , can be consi~
dered as the components of either of the following two tensora T%or T %, i.e,

Tonp - T‘\np = Tnp-

Indeed, two tensors T ° and T ~ can be introduced both possessing identical covariant

components Tn

p

with respect to two different bases
T =T,,9"3P, T =T,,3 "3"? (1.3)

where 3°7 and 3°" (n =1, 2, 3) form a contravariant vectorial basis of a Lagrangian
coordinate system in the actual space and in the space of initial states, reapectively.

The corresponding contravariant components of the above tensors will however be
different. The operation of raising the indices of the tensors T° and T™ must involve
the use of the corresponding tensors g"*P  and g 7P, the latter being the components of
. o, o ~ ~ - - :
the metric tensors g° = g""Py n3°p and g = g "P3" 3" respectively.

We shall show that, in general, the incorporation of V°, Trnp into the defining
parameters is not equivalent to the incorporation of \/*, T, . We have the following
familiar formulas

~ 8’1‘ . A ~
V anp = 8{7:’ _ Tnul &p’“‘ Tapl ::m

43

a7 o
voanp = —a"é%) i Tﬂgl Q?np - Tapr :ﬂn (1»4)

Where I‘A;‘;p and I°} . are the Christoffel symbols

mp
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S 1 A1-<0gAmc af,’"p; ag'\mp
Plomp =587 5p T 5 — g0
ez 1 eus ( 08 s n Of°ps ag"m,,) (1.5)
PoET Ve e T e

Let us consider the difference
V" mTnp — VT np = Tna (Dmp— T p) 4 Tap (M n — T 1) (1.6)

Using the second formula of (1.4) in which g“np, replaces Tnp , we can write the

first formula of (1.5), as
o TR SRR o A ~ 'Fog' N -I‘oj o A ~ Tc,‘
mp= 75§ (Vpg ms + & mil' ps + 87551 mp + V°m€ ps + & pil’ ;s +
+ gasirognp — Vg "mp — gAij‘OfsP — gApiFOzm)
or
Fha _ 1 Ads o A o A _vo ~ )+ TN Foj
mp — ?g (v pg ms + v mg ps Sg mp g g 8j mp (lo7)
Taking into account the fact that V°pg°ms = 0, we have, from (1.7)
~ o A o ~
r ;p’— r ;tp =g * (vopams + Vomeps — V' s€mp), €ms = % (g ms g°ms) (1.8)

Here €y are the components of the tensor of finite deformations.

Analogously, we can obtain
FA;P—FO:‘W = gchs (VApams -+ V“msps— VAsSmp) (1.9)
Using (1.8) let us write (1.6) as

Vv Aan;o = V"anp — Tpgn® (vopems + V°m8ps - Vouemp) —

- Tapg" o (vonsms + vomens = vosemn) (1.10)
Using
L*:‘nillzil)) : . T"agﬂls (épkbm(idsj) + 6mk6p(i65j) . 6sk6m(1’6p)’)) . .
— Tapg”* (8,°0n 8, + 848,78, — 8,600, = LD (T, g"ov)
we obtain, from (1.10)
Y Aanp = voanp + L*fns':;)) voksij (1.12)

Here the round parentheses enclosing the indices (ij) define the operation of sym-
metrising the tensor with respect to the corresponding indices, and dividing the result

by two.
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Replacing Tn with £,,, yields

~ k(i) kg (is D K (if) ~ab
V mEnp= m (lrllp)v7 k€ Am (np) = 6m 6(n 6 -+ L*m (np) (879’ g ) (1.13)

i.e. the conclusion is reached that, from the theoretical point of view, it is immaterial
whether /", €,p of S/°n€np, are included in the defining parameters, since one of
them can be expressed in terms of the other according to the formula (1.13).

If the deformations are small enough to make the terms g,5\/°;€;; negligible, then
we shall have

vV AmSnp = V°m8np (1.14)
with the accuracy of up to the infinitesimals of the higher order or, in other words, for
small deformations the above gradients coincide.

A formula of the type {1.12) can be written for a tensor of any rank !

k (ij)

N *
VT, 808y = VoL 8 8arty + Lo b8y VR (1.15)

from which we see that the inclusion of X/ "1, Tg,, a,, ..., g, among the defining parameters
is not equivalent to the inclusion of V°st.. Bs s By s unless the latter is supplemented
with \7°g;;. Hence, (1.15) gives us the relationship between two sets of the defining
parameters.

If the deformations are small and the condition

Ty, b,....8
v.kTa,. A2y -eer @

voaabc < 1

is satisfied, then
V T ternty = Vml 8y, bs.....8; (1.16)

If 4 is a scalar, then we always have

vAk}" S5 vokp‘ (1-17)

Substitution of

-1m(np ~
Vekeij = k(iv))v mEnp (1.18)

into (1.15) results in the expression for \7°,Tg g ..., 8, in terms of

Vialgu bty  Toubu.osy & V' menp

2. Let us make the following assumptions.

1° In the following, only reversible processes will be considered, although all the
assumptions will remain in force if only we assume that

dQ® = TdS (2.1)

where T is the temperature, S is the entropy and dQ(e) is the increase in the heat energy.
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2° Let us consider the free energy F
F=F (T’ gOij’ €ij, v’\keii’ nAiv vAknﬁi) =F (Pi: kj) (2.2)

Here 84j is the tensor of finite deformations and n* is a vector.

We assume, that the metric tensor in the space of initial states g°#/ is independent
of time

gl =g (g, &, 8

The free energy increment for the elementary particle is, by the 2-nd Law of

Thermodynamics
dF"‘ dT 4 — 38 d813+ d\7
oF N Ai__m . . (2.3)
F g i AV et = ey dt — ST - dg

where eif is the tensor of the velocities of deformation. If g°ij is independent of time,

then Capdt = deaﬁo
3°, We shall assume that dg** is the additional energy flux through the surface 3
surrounding the given element of volume V of mass dm, i.e.

dg**dm = S S*npdodt = S T WSFdudt (2.4)
5 v

here n, are the components of the normal to Z. The fact that V is small implies that the
integral in (2.4) can be replaced by its integrand; taking into account the fact that
dm = pydty = pdt, we have

T 8% dr at
dg** = Y ¥ z—;*V“kSkdt (2.9)

dm

4° We assume that the energy flux d¢** is proportional to the increase in the defining
parameters, i.e.

Skdt = Qk‘l?'deﬁ -+ REHj a<; “18i5 + L¥dn™t -+ mkz;dv“;n“* + AT (2.6)
where QFii, R¥Hi Lk, mkl.  and 4% also depend on the parameters {2.2).

5° We assume that there are no non-holonomic relationships between the defining
parameters and that di, together with \/ “kd; can be considered independent. Let us
use the formulas

A "mbnp = LGy V "k degj, AN " "P = " dn P 4 YEEIP 7 "y dey; (2.7)
the derivation of which will be given in the appendix A. Here
. " . e (ix i
Lm(ﬁ) 6k 8 iﬁp) — &naf * [6};}61?1(16? + 6mk6p“5s’} - ‘53 6m( ﬁpn} -

(np) =
— 80" [8"8n 07 + 8,°8,8,7 — 8,807 (2.8)
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2 At _~pi Aj api ; ~k ~pi i “P’E j
mfnh})p-’:‘%’amk(n ‘lg 'P7+n Jg F1)+_;T‘n (g P16m+g 6m)~
IS N i ajg i
— 2 g™ ("8 1" 0m)
Comparing the coefficients in the left~’%nd right-hand sides of the equation (2.3)
we have, for independent increments

A =0, my=0, RMi-o, X __g (2.9)

8_5%%“_‘ a _:’—Lki’ 5_3% 3% VR (2.10)
p= p 2

av——————éi = Ly + a—-v-%;:; PP — % Q™ 211

which represent the equations of motion, the continuity equation and the law of conservation
of energy, and from a closed system of equations for the components of the vector

n = n"t3";, for the displacement vector U = u"iQ", for the temperature T and the
entropy S.

Eliminating Lki from (2.10), we obtain

aF 1 a oF
an“i - p v k(p av*kn“{) (2-12)

which, can be used to determine n"# in terms of the other defining parameters, when the
relationship between F and the defining parameters is known.

The stresses are determined from (2.11.1) where Qkii given by (2.11.2) is used.
Equation (2.9.4) is used to determine the entropy $.

Assuming that the energy gain dg** exists, we have

dg** — %\7% (0" dey; + L¥dn"'] = (2.13)
i a or k (i5) aF k(i;‘)p) d aF Ai]
= — — PR —— B + [N —
P V k[p(av,‘me’?p Lm(np)"{“av,\mn‘? ‘Fm ii pav,\kn,‘;dﬂ
If 7/ "yn"t are not included in the defining parameters, we have
9 gnrie0, LN =0 (2.19)
an™t

If n*% belongs to the parameters of the type {t;, then since dn"i=£ 0, (2.14)
will give

OF | an™i = O (2.19)

which can be regarded as conditions for the determination of 72”7 in terms of known F.

If n”i is one of the parameters of the type k]., ie. n™t = pTi(E g2 £9),
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then for a particle dn"t = () and Equations (2.15) do not follow. In this casen "¢ should
be assigned to each particle as a constant external parameter. As an example let 2 ¢
define the anisotropy of a material medium possessing a definite texture and let the aniso~
tropy of each particle be constant with respect to time. This will be precisely the case of
n"t belonging to the set of parameters of the type k]. . The energy gain dg** will, in this
case, be given by the following expression

A ij | . i} 7
dg** =5 7" :1Q  deg) = L [0 g Lnllin de | (219

which makes it clear that the energy exchange dg** between the particles takes place
only, when the deformations are time-dependent, i.e. when dg;; =~ (} . In the static
case, dg** = 0.

If on the other hand <7 "1 n"%, are included amongst the defining parameters then,
even in the static case, the energy flux dg** into the particle differs from zero, if
is time-dependent, i.e. if dn" == 0.

3. 1° In case of small deformations the theory of elasticity gives the following
quadratic form for the free energy

F = Altlg, ey, (3.1

or, for the isotropic medium

= A (&)* + 2peutik (3.2)
where A, and ;1 are Lamé parameters.

We shall assume that in case when VA;; €;;j, are, together with &;;, included
in the defining parameters, then the free energy will also be represented as a quadratic
form

17kl ijkim ~ iiklmn P A~
F = A" g8+ BV ", "men + CY V m€i N/ b (3.3)

Here the tcasors A““, Bijmm, and (UkImn gre symmetric with respect to the
indices ij and kil. The tensor AWkl ig also symmetric with respect to the interchange
ijklmn

of pairs of indices ij and kl, while the tensor C is also symmetric with respect

to the simulataneous interchange of the indices i and %, j and [, m and a.

In the case of small deformations \/ «;‘;8@5 can be replaced by \_f"kaij; or, in
the cartesian coordinate system, simply

68ﬁ

__a:tk f} 8“'_ k (3-4)
1f the material medinm possesses a definite symmetry group, then the tensors 4%/ }d,
B kim and C¥ klmn i be invariant with respect to this symmetry group.

General form of sych tensors up to the fourth rank and for any symmetry group, is
given in [6]. The author has at his disposal general forms of tensors of the fifth and sixth
rank invariant with respect to all the seven texture configurations. They are omitted from
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here because of their bulk. They are of the type T = kiTi - ... 4 k,T,, where T, are
the linearly independent tensors formed from the tensors defining the symmetry group of
each particular texture, while k are scalar functions. Thereby, the number p is, for
tensors of the rank r=35 and r = 6, equal to

ocofco-m oofon oom Mmoo 02 co oot
p= 0 6 26 0 25 51 0 (r=5)
p= 1b 15 M T 71 141 141 (r=6)

{symbols for the types of texture are taken from [6]).

2° Consider for example a material medium possessing a symmetry group (eo+m) and
given by the metric tensor g = g1j3i3 i together with the anisotropy vector n = n'3,,
The free energy will, in this case, have the following form
F o= kl (84 + kzgijsij 4 kgn‘njskksij 4 1»*4ninje:;;‘.t‘ﬂf -+ ksninjnknlaijekl -+
g hg8i®in, o+ kBB, 5 T Ha€jiEar, 1 T BgEjBar, T+ FroByfu, i+ Fugi, il +
+ ngngny [hygeipe k + kygBigerr, o+ KraBii®ij, o T Frs®int o,k + FigBulhj, ] +
A Ry g€ g kagBig k845 k T K145, k8ik, § T Hao®is, iBrs, 1 T
+ kgy€i; x5+ Fas®ii, Ban, ;T My Ry k8, 1 T Faa®ij, kur T FasBur, fun, kT (3.5)
- lggir, i, 1+ Karfu, k€1, k Tt Kas®ir, k8jk, 1 T Fagir, 1Bk, k Tt FaoBir 1Erx, j
+ kg By, j T KB, iCki, j T Kaabur, ik, 51 ittty Hge8is k8im, m +
A kgsfis kEmm, 1 T+ 36817, mEk1, m T Kar®ij, mEmik, 1 T Fagim, jrak, 1] +
4 ksg“injnknznmnpeij, ¥&im, p
Hence, the model of the considered medium is fully defined by 39 physical constants
amongst which 2k, = A, and &, = i where A and p are Lamé parameters. Coefficients
ki, ..., ks may depend on the temperature and on the modulus of the anisotropy vector.
For small deformations, we have

1 [Ou; 8uj
Equations of motion then become
0%u; Op;; o [ oF 8 | oF
e P, b =g By e p o | g g | e 3.7
Po 32 Pofs azzj Rof'i Py ij [681-5 Oz, (av;;‘-"ij)] .7

where F ; are the external mass forces;

Py, = ";' Po (2 (2858550 -+ 2kg8y; + Kg (yn8ry + By Byg) + Fyny (niey; + nyeyg) 4
+ 2kgnrnnger,] + kg (raggy - rgy ) Ry (nagyy 5+ ngy, ) - Zhgrdyieg )+
gy (Byi, ; + €y, 1) + Zhyomidistur, k + 2k n8ag, i+ 2kpann e,y
+ 2keygnynineyy | -+ 2y 8y npning @y Ry (a8, gy i)
+ kygnyny (Ri€ix, |+ PR, 1) + Zhg ity b — s Bo (Tf{,; Uegny (83815 -+ 8p8ra) -+
+ 2kgnBpen + kglyy (ndgy + nBi) + Ky (ri85 + ni2y) + 2kygmyjey 4 2k e+
-+ kygnyn 8y (05 4 njaik) + 2k13nknlnm6ije,m + 2kuninjnke” o 2k15nin].n,ekl 4
+ kygryny (58 + niey) 4 2knnmnn g, + bkygBis gt 2k (Byy, s+ 84,0 (3.8)
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A+ kg (Bixys, s + 8ipii 1) T Fgy (858 5+ 88y 1+ 20i58x, 1) -+ Shgpbisy x +
+ oy (2nin 85y + Ry (8, Ot Em, ; 8yl 4 2hyq (rin ell‘.k+61‘jnlnmelm,k)+
+ kg [ (nieg 158y, ) gty (9584 m + B md] + Kag [rye (nie, 5+ njen ) +

+ 2nn,8: 581 ] 2hkgy (niney g+ nyny g) + Zhogny (Ri8g, 5 Ry, 1) +
+ hggn € o (085 - 1 8y) + Ky [nigy o+ njesy )+ 1y (8 5+ ey )]+

o+ Fyyny [Epm, 1 (3855 + 18:3) + 2148, 81 ] + Shggnin 838, 1+ dhiggnyc 844, +
+ ]"34 [2n- ‘nkn elm m +=n tmh palm p(” 63}: + H’jazk)} + 2k35nknl (nin 3mm { +
+ AT P ualm p) + akasnzn]nln 8lm k + ks,‘,nznm [2” eke', m + 2y (njgim, i +

-+ REm j)} 4 2kgoniin,, (”igjl,m -+ ”‘je;‘{,m) I inj"‘knlnmnoefm,p}

§..=1 for i=2j, 6“:0 for i=&J

1}

From the continuity equation we have, for small deformations
ou,,
pxpo(1~5;;) (3.9)

where 4 are the components of the displacement vector.

4. 1° Let us assume, in addition, that the external mass forces are absent, that 72 is

time and coordinate independent and let us consider the case of longitudinal waves
1=u:“(33): uz—'——usEO (4.1}

Then, the equations of motion reduce to a single equation

*u %u I
5w = Aa_z'z _ B?a? (4.2)
A = 2k, -+ 2k, + 2k (ny)? + 2ky (ny)? + 2ks (ny* (4.3)

B =2k + ks + vkzo + kay F Fyg) + 2 (ny)? (hys +
+ kgy + Koy + Kog + Koy + Fog o+ kg F Ego + Koz A Egy + (4.9
+ kgg) + 2 (ny)* (kgy + kgs + Egs -+ kgr -+ kgs) + 2 (ny)® Ky

From the conditions of stability we preuppose that &, > 0. Then 4 > 0 and B > 0.

We shall seek the solution of (4,2) in the form
u=f(z— af) (4.5)

Solving (4.2) we obtain
a2
u= cwos[( B ) (x— at)] 4 ¢p5in l_{\

(2n)23 _ B \h g 2n( B \_ A
4+ ' K~2“(;?:7) , T=F(7=g)"= e ALK

)”"* (z — at)] (4.6)
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Here a is the velocity of the wave propagation, A is the wavelength and T is the
period.

Since 4 > 0 and B >0, we see from (4.7) that in the given medium, the velocity of per~
turbation @, can never assume the value gmaller than that of the velocity of perturbation in
the Hooke’s elastic medium of the theory of elasticity, and approaches it at large values of

A.
When A is small, then from (4.7) it follows that
a? = 4nB [ A2, T =M/2n VB (4.8)

which means that both, a and T are defined in terms of the coefficient B, which in tum is
defined by the coefficients of the quadratic form, which multiply the deformation gradients.

2° Under the assumptions concering n; and F; which were already given in par. 4.1°,
we consider the case of transverse waves

Uy = Uy (7)) = U, (2), ug = uy (r,) = uq (2), u =0 (4.9)

Since n, are coordinate~independent we can, after the transformation of coordinates x, and
%, (rotation in the plane x, x,), select a coordinate system in which n, = 0. In this system
the equations of motion will be given by

0 %m _ %( a"“-{-lza"" + lsas"’)

dx Ox?
_az_llz 62u2 A a‘ug azus B 62”8 3‘u, (4- lo)
a2~ %o Lo I art

o = 4k, + 2k, (n,2 + n.?) + 4k; (nyny)®

A, = bkyg + 2k + 2Ky + 2ky5ny® + Koy (ny? + ng?) +
+ 2kogn,® + 2kggny® + 2kgon,? + Akgens?
p = 4k, + 2ken,?
Bl = 4k18 + zklg + 2k20 + n (2’525 + k27 + 2k30 + 4k83)

I, = 4kgnyny + 4kgning + bkgn®n,

ly = 2ny (ke + kg) — 2n, (kg + ko) + nng (— 2kyp + 4y — dkyg + 2ky)
— Iy = 2nyn, (2kog + 2Kkgq + Koy + Ky + 2oy + 2kyg + 2Ky +
+ 2kgo + kgy) + 21,3 ng (Bkgy + 2kgy + bkgg + 3Ky + bdkgg) + 8kgon,®ny

We shall seek the solution of (4.10) in the form
u, =fa (¢ — bt), ug = (z — at)
Then, if we assame that ng, == (0 , the solution will be

(4.11)

(4.12)
= = BB\ — in|(Z=B\" (z — ]
u, =0, ug=oc cos [( B ) (z at)] + ¢y 8in [( B ) (x — at)
from which we can obtain the relations analogous to (4.7)

4B By \'a _2n( By \'" _ A
e+ ¥R a=m(G2)N T=T(a23) = veemm
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From (4.13) it follows that the plane of polarisation of the transverse wave is per-
pendicular to the plane formed by the direction of the anisotropy vector n and the direction
of the wave front. If n, = n; =0, then the plane of polarisation can be arbitrary.

Note. In both, longitudinal and transverse cases we obtain the relationship hetween
the wavelength A and its frequency @ = 277/7, in the form of dispersion equations

o = 2% Y AV T 475, o) = 2{; V BA® 4B, (4.14)

From (4.14) it follows that for large wavelengths, the frequency is related to the
wavelength in the manner as in Hooke's media B
o =2nYA/[M o, =2xVB/h
while in case of small wavelengths, the frequency is determined from the coefficients
appearing in the quadratic form in front of the deformation gradients, according to the
formulas

o_=4n? VBN, o = 4n* VB, / W (4.15)
The velocity of propagation varies with wavelength and is calculated by means of

(4.13) for transverse waves, and by means of {4.7) for longitudinal waves.

If the direction of wave propagation is orthogonal to the anisotropy vector then, since
in this case 4, B, 3, and B, are independent of n;, it follows, that the anisotropy of the
medium does not influence the frequency, peried or the velocity of propagation and, that
the waves propagates just as they do in the isotropic medium.

Appendix 4. Derivation of the formulas {(2.7). We have the well known formulas

V" mEnp = FE™ —dep, T :np —deapr :;m
de - - (A.D)
dv‘menpzd ( BE,Y:’{) it enar gnp—empr gnn)
Equating them, we obtain
. . (A.2)
av Ameﬂp =V A’mdenp - e’nadr ‘:lp - sa.de ;m
e _i ~as 98" e ag'ps _ agAmp (A.3)
mp— 2 g agp iaim' ags
" ag* ag” ag” R
dr ;p:—%(gms 13:‘3___ TP)dg as y
oEP at ot
1 9dg " ms  9dg” s . 948" my ) (A.9)
taE o> o™ 5%
aia 08 s 08"ps 08y
2r ‘npg js == agp + agm - aas

Using the second formula of (A.4) and the first formula of (A.1) in which
de,,="/sd (8 p—8°p,) CaR be replaced by de,,= '/2d¢" .y, assuming that g°,, is time
independent, we can write the first formula of (A.4), as

ar"E =T") g dg g P (V" (dome + deqT ), deg T + T~ dep, + (A5)
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Fdepl s eyl = N ey, — deg T ] —dey 0 Y=
=T 8% 8 g (V" s+ T " ey — V" ey +T ) g g
Since

P") g g™ S T ] g =T d(e" %" ) =T"}, =0

we finally obtain the formula
a5, =8 2 (V" pleme  V N @eps — V " lEmy) (A.6)
Using the latter, we can write {A.2} in the form
A7 " ey = m&;;v #2E; (A7)

It is interesting to note that in the formula obtained previously

V" mEnp == Lm (np)vohell (A.8)
and in the formula (A.7), we encounter the same tensor
LE D = 8,%8,06, ) —e,8" % [6,"5,,%,7 + 8,56 (8.0 — 8 %5, 7] -
Bapf Tos {ﬁnkém(i‘ssj) + §mk6nﬁ§s§} - ésksm(iﬁnj)}

In an analogous manner we obtain the formula

(A.9)

A " yn P= " dn P M R =27t dn P L RO PG g (AL10)
where
YEONP = 58,8 (n g P n Mg P o Sn R (g7 RIS E g P ) (A1)
_ _; g P (0”75, 00,0
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